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ABSTRACT The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid
divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian
species. Closely related species often display diverse baculum morphology where no other morphological
differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level
of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence.
Quantifying the genetic basis of baculum size and shape variation has been difficult because these
structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward.
Here, we develop a novel morphometric approach to quantify size and shape variation from three-
dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of
mice. We identify two quantitative trait loci (QTL) that explain �50% of the variance in baculum size, and a
third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that
baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that in-
dependently modulate size and shape. Based on a combination of bioinformatic investigations and new
data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in
bone morphogenesis and may enable future genetic manipulation of baculum morphology.
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The rapid divergence of male genitalia is an almost universal evolu-
tionary pattern among sexually reproducing organisms (Hosken and
Stockley 2004; Eberhard 2009, 1985). Rapid evolution extends to the
baculum, a bone in the penis of many mammalian species. Even a
cursory examination of over 200 illustrations by Burt (1960) reveals a
bewildering array of baculum diversity in size, shape, amorphousness,
symmetry, and even the number of bones and patterns of branching.
Mammalogists have long recognized the utility of the baculum in iden-

tifying species that are otherwise morphologically indistinguishable
(i.e., Herdina et al. 2014; Thomas 1915), even positing that bacu-
lum morphology reinforces reproductive isolation between species
(Patterson and Thaeler 1982, but see Good et al. 2003).

The selective forces that drive the evolutionary novelty of the
baculum are likely to include a combination of female choice, male-
male competition, and conflict between male and female reproductive
interests (House and Simmons 2003, 2005; Eberhard 2009, 1996, 2000;
Breseño and Eberhard 2009; Arnqvist 1998; Arnqvist and Rowe 2005;
Perry and Rowe 2012; Rönn et al. 2007; Rowe and Arnqvist 2012;
Schulte-Hostedde et al. 2011; Hosken and Stockley 2004; Tasikas
et al. 2009; Patterson 1983; Patterson and Thaeler 1982; Long and
Frank 1968; Ramm 2007; Brennan et al. 2007, 2010; Arnqvist and
Danielsson 1999; Higginson et al. 2012). The enormous interspecific
divergence in baculum morphology, coupled with relatively low levels
of intraspecific variation (e.g., Ramm et al. 2010; Klaczko et al. 2015),
suggests that male genitalia are the targets of recurrent adaptive evolution.

Several studies have linked baculum characteristics with male re-
productive success. In seminatural enclosures of multiple male and
female house mice, males with a wider baculum sired both more and
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larger litters (Stockley et al. 2013). Similarly, in wild populations
and experimental populations subjected to higher levels of sperm
competition, males developed bacula that were significantly wider
than males from low sperm competition populations (Simmons
and Firman 2014). Dominant males tend to develop wider bacula
(Lemaître et al. 2012), suggesting additional links between baculum
morphology and presumably adaptive behavioral phenotypes.
Since sperm competition is a regular feature of mouse mating
ecology (Dean et al. 2006; Firman and Simmons 2008), baculum
size and shape are probably important components of fitness in
natural populations. In mice, the baculum resides in the distal
portion of the glans penis which enters the vagina during copula-
tion (Rodriguez et al. 2011). Intromission may be an important
aspect of “copulatory courtship,” which influences fertilization suc-
cess beyond delivery of ejaculate (Adler and Toner 1986; Matthews
and Adler 1978; Toner and Adler 1986; Toner et al. 1987; Diamond
1970), and it is possible that the baculum plays a role in these
processes.

The puzzling diversity of baculum morphology and its link to male
reproductive fitness demand more attention. A genetic dissection of
the ultimate sources of variation in baculum morphology has been
hinderedby twomainobstacles.First, bacula lack true landmarks suchas
sutures, foramina, or processes. As a result, most studies summarize
baculum complexity with simple length, width, and/or weight measure-
ments (Long and Frank 1968). Some studies have captured baculum
outlines using more modern computational techniques (Simmons and
Firman 2014), but ideally, baculum size and shape would be captured in
three dimensions. Here, we overcome this challenge using tools in com-
putational geometry and geometric morphometrics to measure bacula
without reliance on true landmarks, which should be applicable to
many different biological structures.

Second, although variation in baculum morphology is heritable
(Simmons and Firman 2014), no study to date has mapped the genetic
basis of variation in size or shape. Both genetic causes and molecular
mechanisms underlying its rapid evolution are uncharted. The rapid
evolutionary divergence discussed above predicts a relatively simple ge-
netic architecture in which mutations in a few key loci lead to large
changes in morphology. Furthermore, we might predict that size and
shape would be modulated by different loci, so that divergence in one
aspect is uncoupled from divergence in the other. Here, we unite our
newly developed morphometric methods with the power of mouse
genetics in a quantitative genetics framework, using two genetic models:
a family of recombinant inbred lines (RILs) known as the BXDs (Taylor
et al. 1973, 1999; Peirce et al. 2004), and a family of advanced intercross
lines (AILs) known as the LGxSM (reviewed in Nikolskiy et al. 2015).

Our study makes several advances toward understanding the ge-
netic basis of baculum size and shape. We demonstrate that variation
in baculum size and shape is heritable, and is controlled by a small
number of QTL with comparatively large effects. We identified dif-
ferent QTL affecting size vs. shape that, when combined with new
data on gene expression and bioinformatic filtering, highlight sev-
eral compelling candidate genes. Future molecular analyses should
eventually lead to a better understanding of genetic mechanisms of
recurrent adaptive morphological evolution.

MATERIALS AND METHODS

Specimens
All protocols and personnel were approved by USC’s Institute for
Animal Care and Use Committee (protocol #11394). Our study was
based on two powerful mouse genetic models, the BXD RILs and the

LGxSM AILs. Most mice were already euthanized and frozen as part
of unrelated research programs; a few were raised in-house or or-
dered through common vendors, then euthanized via carbon dioxide
exposure followed by cervical dislocation.

The BXD RILs began in the 1970s with approximately 30 RILs
(Taylor et al. 1973, 1999) and were expanded to �150 lines (Taylor
et al. 1999; Peirce et al. 2004; R. W. Williams, unpublished results).
All strains have been genotyped at over 3000 informative markers
(www.genenetwork.org). Each BXD RIL began as a cross between
two classical inbred strains, C57BL/6J (B6) and DBA/2J (D2). BXD1
through BXD42 were then maintained via brother-sister mating.
BXD43 and higher were maintained through nonsib matings until
generation 8–12 to accumulate larger numbers of recombinations
and then inbred, making them an advanced intercross-rederived
RIL family (Peirce et al. 2004), to create homozygous strains that
on average have 50% B6 and 50% D2 genome, but with a different
50% segregating across different BXD RILs dependent upon the
randomness of recombination during inbreeding. Individuals from
the same BXD RIL are essentially genetically identical, and can be
considered biological replicates of the same genotype. We sampled
males that were 60–200 d old since the baculum is fully developed at
this age (Glucksmann et al. 1976). The genomes of B6 and D2 have
been nearly completely sequenced (Keane et al. 2011; Waterston
et al. 2002; Wang et al. 2016), providing power to followup inves-
tigations of QTL.

The LGxSM AILs began from crosses between the LG/J and SM/J
strains, originally selected over many generations for large and small
body size, respectively (Goodale 1938; MacArthur 1944). LGxSM AILs
were not intentionally inbred, but rather maintained through random
breeding of unrelated individuals. Approximately 100 families are cre-
ated each generation by pairing males and females that are not full
siblings. Each generation accumulates more recombination events that
break up the genomes of the two parental strains while avoiding in-
breeding. Published studies of the LGxSM AILs exist at the F2, F8, and
F34 generations (Norgard et al. 2011; Parker et al. 2011, 2014, 2012;
Cheng et al. 2010). As part of unrelated research, several hundred
individuals of the F43 and F44 generations were genotyped at thou-
sands of markers (J. M. Cheverud, unpublished results). These F43 and
F44 mice were sampled here. Unfortunately, many of the frozen car-
casses were missing the penis as a result of prior necropsy, and only 144
males could be sampled. The parental LG/J and SM/J genomes have
been sequenced (Nikolskiy et al. 2015).

For all specimens, the glans penis was cut proximal to the baculum,
then placed in distilled water at room temperature for approximately
1 wk, at which point tissue was easily teased away using forceps
and pressure of liquid flow from a squeeze bottle of 70% ethanol.
Bacula were soaked in 200 mL of 1% ammonia solution for a maxi-
mum of 2 hr to clean any remaining tissue and remove oils, then dried
and packed into thin layers of Aquafoam (Kokomo, IN) for micro-
CT scanning. There is a distinct mass of fibrocartilage distal to the
bony baculum; our study did not include this structure. For the re-
mainder of the manuscript, “baculum” refers to the single bone in the
baculum, excluding the distal fibrocartilage (Figure 1).

Micro-CT scanning of bacula
Aquafoam slices containing bacula were stacked in a 35 mm cylindrical
micro-CT sample holder. Micro-CT scans were acquired using a
uCT50 scanner (Scanco Medical AG, Bruttisellen, Switzerland) at the
USC imaging core facility, under the following settings: 90 kVp, 155 uA,
0.5 mm Al filter, 750 projections per 180� (360� coverage), exposure
time of 500 msec, and voxel size of 15.5 mm.
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3D transformation to “align” bacula
Customized scripts were written in Python (www.python.org) and R
(R Core Team 2014) to process microCT images, segment individual
bacula, perform transformations, and call semilandmarks; all scripts
and microCT images have been deposited in the Figshare Data repos-
itory (DOI:10.6084/m9.figshare.3080725.v1). Each baculum was seg-
mented out of the z-stack of micro-CT images and converted to a 3D
point cloud of x-y-z points. Each pixel in the point cloud represents
bone, and the images include internal structures, not just the surface.
Point clouds were transformed in three main steps borrowing meth-
odology from Dines et al. (2014) and are graphically illustrated in
Figure 1. First, the two points furthest apart in the point cloud were
used to initially define a distal-proximal axis, which we consider a
z-axis. Second, the 10% most proximal and the 10% most distal points
were sliced out separately, and the centroids of their convex hulls
calculated. The point cloud was then transformed such that the prox-
imal centroid became 0, 0, 0 and the distal point cloud became 0, 0, z
(where z was some positive value). This second transformation effec-
tively controlled for slight variation associated with defining points
in the first step. Third, we sliced out points that fell 15.00–15.25%
along the length of the new z-axis and computed its minimum bound-
ing rectangle (MBR) (Butterworth 2013). The entire point cloud was
then retransformed so that the long end of this MBR ran parallel to a
new x-axis, and the short end parallel to a new y-axis. Slight curvatures
in the bone, especially toward the distal end, were exploited to ensure
the dorsal-ventral axis was correct. All bone transformations were vi-
sually confirmed using the RGL library in R with customized R scripts.

Defining semilandmarks
The baculum lacks any true landmarks, so we mathematically defined
802 points along each bone (DOI:10.6084/m9.figshare.3080725.v1).
These points can be thought of as “semilandmarks” (Mitteroecker
and Gunz 2009; Bookstein 1997, 1991) since they correspond to

regionally homologous regions across all specimens. Fifty point slices,
each with thickness 0.25% the length of the z-axis, were evenly spaced
along the anterior-posterior axis. One such slice is shown in detail in
Figure 1E. Each slice was divided along the x-axis by seven lines run-
ning parallel to the y-axis. Points within 4% of the width of the slice to
each line were projected onto that line, then the ventralmost and dorsal-
most points defined as semilandmarks, specifically labeled according
to slice and position. The leftmost and rightmost points of each slice
were also defined as semilandmarks, for a total of 16 semilandmarks
per slice (Figure 1E), and a total of 800 semilandmarks across the 50
slices. The single anterior-most and single posterior-most points of
the baculum were added, bringing the total to 802 (Figure 1, A–D).

Quantifying size variation
Size was quantified as centroid size, the square root of the sum of squared
distances of these 802 semilandmarks from their centroid. Counting
the number of pixels per scan, or even the density of pixels (number of
pixels divided by centroid size) yielded identical results, but we present
those based on centroid size for simplicity.

Quantifying shape variation
We quantified shape difference between all possible pairs of bacula in
a Generalized Procrustes framework, which standardized each set of
802 semilandmarks to a common size, translated them to a common
origin, then optimally rotated their coordinates to minimize their Pro-
crustes distance (Rohlf and Bookstein 1990; Slice 2007). During Pro-
crustes superimposition, semilandmarks were allowed to “slide”
along the bones’ surfaces using the function GPAGEN in the R package
GEOMORPH (Adams and Otárola-Castillo 2012), which improves align-
ment of corresponding anatomical regions lacking individual land-
mark homology (Bookstein 1997, 1996; Mitteroecker and Gunz 2009;
Gunz et al. 2005). In short, sliding semilandmarks accompany un-
certainty in specific placement of landmarks.

Figure 1 Visual representation of our
morphometric pipeline for defining semi-
landmarks showing the two “parental ex-
tremes.” See text for details. Dorsal (A and
B) and lateral (C and D) views of a typical D2
(A and C) or B6 (B, D) individual (specimens
#DBA_1 and #C57_1, respectively). The gray
background of each bone represents ap-
proximately 175,000 x-y-z points segmented
from micro-CT scans. Moving from proximal
(left sides of A–D) to distal (right sides of
A–D), we sampled 50 slices. One slice is
shown in more detail (E), which is looking
down the center of the bone, displaying an
empty internal medullary cavity. Exactly seven
points were defined on the ventral and dorsal
surfaces, as well as the leftmost and rightmost,
totalling 16 semilandmarks per slice, indicated
by spheres. The colors of the spheres indicate
their contribution to shape differences (LD1)
between D2 and B6 with red indicating re-
gions that differ, and blue indicate more sim-
ilar regions in comparisons between the two
parental strains. Horizontal black axes indicate
the z-axis (A–D) or the x-axis (E). Vertical black
axes indicate the x-axis (A and B), or the y-axis
(C–E).
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The GPAGEN analysis resulted in a pairwise distance matrix (in the
case of the BXD RILs, a 369 · 369 matrix; in the case of the LGxSM
AILs, a 144 · 144 matrix). Our goal was to define a single metric that
summarized each specimen’s shape in the context of the parental
strains. Therefore, using only specimens of the parental strains (in
the case of BXD RILs, 27 B6, and 18 D2 individuals; in the case of
LGxSM AILs, 10 LG, and 9 SM individuals), we performed a linear
discriminant analysis on the pairwise distance matrix, using the LDA

function in the R package MASS (Ripley 2002) and parental strain as the
separating factor. With two parental strains, a single linear discriminant
function exists. We then projected the entire pairwise distance matrix
into the space defined by this LD1, using the PREDICT function.

Repeatability
Toassess the repeatability of ourmicro-CTscanningandcomputational
geometric manipulations, we scanned 34 bacula 81 times (32 bacula
scanned twice, one baculum scanned six times, and one baculum
scanned 11 times), each time removing the specimen and reloading
it into Aquafoam and the micro-CT holder. For size, we calculated
repeatability as the 1 – the median coefficient of variation of centroid
size (unbiased standard deviation divided by the mean) across speci-
mens. For shape, we could not calculate repeatability of LD1 because
the measure spans 0, meaning we could be dividing by 0 to calculate
coefficients of variation. Instead, we took the pairwise shape distance
of each replicate bone to the other 368 bones in the dataset, then cal-
culated the coefficients of variation per pairwise comparison, averaging
across pairwise comparisons.

Environmental input
To assess the effect of environment, we focused on 28 B6 individuals
(10 from the Jackson Laboratory, nine from the Levitt Lab at USC, nine
from the Williams/Lu Lab) and 17 D2 (seven from the Jackson Labo-
ratory, 10 from the Levitt Lab at USC). We performed an ANOVA with
lab origin nested within strain for these 45 parental individuals. There
were no other strains for which we sampled substantial number of
individuals from different labs.

Heritability
Heritability, the proportion of phenotypic variance explained by ge-
netic variance of size and shape measurements was estimated using a
one-way ANOVA to summarize the amount of variance explained
by strain. Among our 73 BXD RILs, we collected at least three males
for 60. Heritabilities were estimated by focusing on these 60 (though
theQTL mappingdescribedbelow includedall 73RILs).Theproportion
of variance explained by strain identity was taken as the heritability.

Mapping QTL
We employed two main analyses to map loci affecting baculum size
(centroid size) and shape (LD1). For the BXD RILs, phenotypic values
were first averaged for any RILs for which we had sampled multi-
ple individuals. Genotypes were downloaded from GeneNetwork, and
included 3805 markers (2.2% mean missing data per RIL) spaced at a
mean 0.54 cM throughout the genome. We kept the 2953 markers that
were also part of a relatively recent effort to update the mouse genetic
map (Cox et al. 2009). After removing parental strains (which are un-
informative since they lack recombinant chromosomes), we employed
the SCANONE function in the R package QTL, using Hayley-Knott regres-
sion to estimate the location and the effect of QTL (Broman and Sen
2009). To determine significance, we permuted phenotypes and geno-
types 1000 times, and took the 95th quantile of the 1000 maximum
LOD scores as our empirical significance threshold. We estimated the

confidence intervals of any significant QTL using the LODINT function
in the R package QTL, by dropping 1.5 LOD units from the maximal
LOD unit on the chromosome. Age and weight could not be included
as covariates in analyses of the BXD RILs because not all labs that
donated carcasses collected this information, and where they did
occur they often varied dramatically given the individuals derived
from very diverse research programs. Ignoring age and weight should
only add noise to our analysis and inflate Type II errors.

Unlike the BXD RILs, the LGxSM AILs were not maintained via
brother-sister mating, so no two individuals were genetically identical
but were also not equally related (Darvasi 1998; Darvasi and Soller
1995). The LGxSM AILs were analyzed using the R package QTLREL

(Cheng et al. 2011), which accounts for background genetic related-
ness prior to scanning for QTL. Genetic relatedness was estimated us-
ing all markers except the markers on the same chromosome as the
one being analyzed (the “marker” option). Unlike the BXD RILs, age
and weight could be included as covariates in our analyses of LGxSM
AILs, because all individuals derived from the Cheverud Lab and
were reared under identical conditions. Individuals were genotyped
at 4716 diagnostic markers (0.1% mean missing data per specimen)
spaced at a mean 0.36 F2 cM (J. M. Cheverud, unpublished data).
Significance thresholds were estimated with 1000 permutations. Re-
combination distances were calculated from Cox et al. (2009).

RNA sequencing
To potentially narrow down QTL identified in the BXD RILs to can-
didate genes, we generated RNA-seq data from 10 5-wk-old B6 (N = 5)
and D2 (N = 5) individuals. For logistical reasons, our B6 bacula were
derived from C57BL/6N, which is a substrain that is over 99.9% genet-
ically identical to C57BL/6J. The baculum is still not fully ossified at this
point (Glucksmann et al. 1976), so genes expressed may ultimately
affect its size and shape. Focusing on 5-wk-old males admittedly over-
looks potentially important expression patterns that occur prior to or after
this age. Therefore, we view these data as a means to “generate” hypoth-
eses rather than definitively link genes under QTL to causality. Because
we did not identify any significant QTL among the LGxSM AILs (see
below), we only gathered RNA-seq data from the BXD parental strains.

Bacula were homogenized in liquid nitrogen, then placed immedi-
ately into Trizol according to the Direct-zol RNA MiniPrep (Zymo
Research R2052) protocol. RNA integrity was verified by Experion
analysis (Bio-Rad). PolyA selection was carried out using Illumina
Truseq V2 polyA beads. Libraries were prepared using Kapa Bio-
systems Stranded mRNA-Seq kit. We performed 12 PCR cycles to
amplify the libraries, which were then visualized by Bioanalyzer
analysis (Agilent) and quantified by qPCR (Kapa Biosystems Illumina
Library Quantification Kit). Sequencing was performed on a NextSeq
500 using V2 chemistry.

Paired-end 100 bp sequencing reads were mapped using Tophat
(Trapnell et al. 2009) and aligned to the complete Mus musculus
GRCm38.73 genome release available from Ensembl. Tophat v2.06
was run on a Linux x86 64-bit cluster with the following –read-edit-
dist 8 –read-mismatches 8 –segment-mismatches 3 –min-anchor-
length 12 –report-secondary-alignments. In addition, the GRCm38.73
General Transcript File (GTF file) was included with the “-G” and
“–no-novel juncs” tags, ensuring that only known annotated exons
were used. These mappings of full length and junction reads were
subsequently used by Cufflinks (Trapnell et al. 2009) to generate gene
counts. Cufflinks v2.1.0 was run on a Linux x86 64-bit cluster with
the following parameters “–multi-read-correct–upper-quartile-norm–
compatible-hits-norm–frag-bias-correct” and with the gene annota-
tion included in the GTF file.
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Illumina sequencing generated 276 M paired end reads, of which
247 M (90%) mapped reads were used to access expression for the
entire annotated transcriptome. A total of 13,926 genes had an FPKM
value of at least 1 in at least one of the 10 specimens analyzed. Of these,
479 (610) were significantly differentially expressed at a corrected P =
0.05 (0.10) between the D2 and B6 parents.

Because our main interest with the RNA-seq data was to generate
hypotheses, we were willing to accept increased Type I errors (false
rejection of a null hypothesis) in favor of reduced Type II errors (false
acceptance of null), so we used a cutoff of P = 0.10 instead of the more
traditional P = 0.05. From the RNA-seq data, we identified differentially
expressed genes (P = 0.10 between parental strains after correction by
Benjamini-Hochberg) as well as genes that were highly expressed in
both parents (in the top 10% of genes expressed with FPKM at least 1).
Even though this latter category may not show evidence of differential
expression between parental strains, they could still lead to differential
baculum development between parental strains, for example through
posttranslational modification.

Bioinformatics
To further identify candidate genes under QTL, we characterized ge-
netic variants that differed between the parental strains D2 and B6.
Single nucleotide polymorphisms were downloaded using the Biomart
tool from Ensembl version 81 (www.ensembl.org) and we identified
genes with at least one nonsynonymous difference between B6 and
D2 that also fell under our QTL. We also downloaded their estimates
of dN/dS from “one-to-one” orthologs between mouse and rat to scan
for genes with unusual rates of nonsynonymous evolution.

Data availability
Data and associated code from the entire pipeline described below
are available on the Figshare Digital Repository (DOI:10.6084/
m9.figshare.3080725.v1).

RESULTS
We microCT-scanned 369 bacula representing 73 different BXD RILs
and the two parental strains B6 and D2. Repeatability was 0.99 for
centroid size, and 0.97 for shape divergence, respectively. Lab origin
did not significantly influence shape (F3,1 = 1.3, P = 0.28), but did con-
tribute to size (F3,1 = 12.68, P, 0.0001), explaining 18% of the variance
in the latter case. In summary, our methods show good repeatability
and any contribution arising from lab origin should not introduce
systematic biases into our analyses.

BXD RILs, size
Strain was a significant predictor of size variation (F59,244 = 14.8, P ,
0.01), accounting for 78% of the variance (heritability = 0.78), with BXD
RILs largely falling between the parental B6 and D2 strains indicative of
mostly additive genetic variance (Figure 2). Phenotype means that fell
outside either parent suggested transgressive segregation or epistasis.

From the 73 BXD RILs, we detected two QTL for size (Figure 3A).
One occurred on chromosome 1 between 136.3–150.1 Mb, with a
maximum LOD score of 7.45, which was higher than all 1000 permu-
tations (95% quantile = 3.63). The other occurred on chromosome 12,
58.0–76.4 Mb, with a maximum LOD score of 4.21, which was greater
than 988 permutations (P = 0.012). The two markers closest to the max-
imal QTL peaks on chromosomes 1 or 12 showed a clear difference in
centroid size among BXD RILs carrying a B6 allele vs. D2 allele (Figure
4, A and B). These two size QTL were not in linkage disequilbrium
(x2 = 0.16, df = 1, P = 0.7), as expected since they reside on different
chromosomes.

BXD RILs, shape
Strain was a significant predictor of LD1 variation (F59,244 = 18.1, P ,
0.01), accounting for 81% of the variance (heritability = 0.81), with
BXD RILs largely falling between the parental B6 and D2 strains in-
dicative of mostly additive genetic variance (Figure 2). From the 73
BXD RILs, we detected a single QTL on chromosome 2, 154.7–161.7
Mb, with a maximum LOD score of 4.32, which was higher than 988/
1000 permutations (P = 0.012) (Figure 3B). At the marker closest to
the maximum QTL peak of chromosome 2, there was a clear difference
in LD1 between the 33 BXD RILs with a B6 allele compared to the 40 with
a D2 allele (Figure 4C). This shape QTL was not in linkage disequilib-
rium with either of the two size QTL (x2 = 0.01, 0.32, df = 1, P = 0.9, 0.6,
respectively), as expected since they reside on different chromosomes.

BXD RILs, size and shape correlated
Interestingly, the mean size and shape per strain were correlated
(Pearson’s correlation coefficient = –0.35, P = 0.002, Figure 2), even
though major-effect QTL affecting size and shape were found on dif-
ferent chromosomes. This correlation suggests that small bacula tend to
have the straight shape of D2, while large bacula tend to have the
dorsoventral curvature of B6.

BXD RILs, RNA-seq and bioinformatics
There were 111 (162) protein-coding genes that occurred under the size
QTL identified on chromosome 1 (chromosome 12), of which 93 (145)
were expressed, 3 (5) were highly expressed, 1 (2) was differentially ex-
pressed, and 11 (14) had at least one nonsynonymous variant between
B6 and D2 (Table S1 and Table S2).

There were 160 protein-coding genes that occurred under the shape
QTL on chromosome 2, of which 140 were expressed, 12 highly
expressed, 2 differentially expressed, and 27 had at least one non-
synonymous variant (Table S1 and Table S2).

A literature review of all protein-coding genes that fell under any
one of our three QTL (Figure 3) and were also highly expressed, differ-
entially expressed, or had at least one nonsynonymous variant, revealed

Figure 2 Baculum size and shape variation among the 73 BXD
recombinant inbred lines (RILs) and the two parental strains D2 and
B6. Each point represents the mean size and shape for each strain,
bars indicate standard errors where possible. B and D indicate the two
parental strains of the BXD RILs. B = B6, D = D2.
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16 genes with potentially interesting effects on bone morphology (Table
S3). Four of these – Ptprc, 2700049A03Rik, Aspm, and Kif14 – showed
relatively high pairwise dN/dS estimates when compared to their one-
to-one ortholog in rat (all above the 75% genome-wide quantile).

LGxSM AILs, size and shape
From the LGxSM AILs, we microCT-scanned 144 bacula, including
36 unrelated F43 and 89 F44 from 52 unique families, as well as 10 LG
and9SMparental strains.Althoughbothcentroid sizeandLD1variance
showed evidence of largely additive genetic contribution (Figure S1), no
significant QTL were identified for either (Figure S2). Furthermore,
there was no correlation between the proportion of an individual’s
genome that was from the LG parent and either baculum size (cen-
troid size) or shape (LD1) (Pearson’s correlation coefficient, P = 0.98,
0.67, respectively). This is probably an indication that our sample size
for LGxSM was underpowered, a hypothesis supported by the lack of
significant QTL or correlation between proportion LG/J alleles and
body size (Pearson’s correlation coefficient, P = 0.75), a trait that is
highly heritable in larger studies of LGxSM intercrosses (Kramer et al.
1998; Cheverud et al. 1996).

DISCUSSION
Baculum size and shape diverge rapidly across species, with known
effects on male reproductive success. By combining a novel morpho-
metric pipeline with the power of mouse quantitative genetics, we make
three main discoveries. First, a few QTL of major effect influence
baculum variation in the BXD RILs, with two QTL explaining 50.6%
of the variance in size, and a third QTL explaining 23.4% of the vari-
ance in shape. Interestingly, no QTL were detected in a second genetic
system, the LGxSM AILs. Second, these major-effect QTL affecting
size were distinct from the major-effect QTL affecting shape, even
though the two traits were correlated. Third, by combining our QTL
with RNA-seq data as well as bioinformatic features and literature
review, we identified 16 promising candidate genes that may enable a
deeper understanding of the genetic basis of their rapid divergence.

Testing predictions that stem from rapid divergence
Our finding of a few QTL with large effects suggests that morphologi-
cal divergence of the baculum may accumulate easily, acting via muta-
tions in a few key targets. Several studies (all in insects, most in Drosophila)
have found QTL of large effect (.10% of phenotypic variance) on

aspects of the male genital apparatus. It should be emphasized that
like the current study, none of these studies have estimated effect sizes
from specific genes. Many of these studies were initiated by crossing
two closely related species, then backcrossing the F1s to either parental
species, including two species of carabid beetles (Sasabe et al. 2007),
Drosophila simulans and D. mauritiana (True et al. 1997; Zeng et al.
2000; Liu et al. 1996; LeVasseur-Viens and Moehring 2014; Tanaka
et al. 2015), D. simulans and D. sechellia (Macdonald and Goldstein
1999), and D. yakuba and D. santomea (Peluffo et al. 2015). Although
large-effect QTL were detected in all these studies, the extent of linkage
that will exist in these backcross designs, coupled with the limited
number of markers used to interrogate the genome, may underes-
timate the true number of QTL and thus inflate the percent variance
explained by any single QTL. Furthermore, it is possible that in-
terspecific studies are biased toward finding large-effect QTL since
the different species employed were already known to harbor highly
divergent male genitalia. Alternatively, we might predict a bias to-
ward finding small-effect QTL if genetic effects are masked by dis-
ruption of normal development in hybrid males.

In contrast, studies within species tend to find QTL with smaller
effects. Three QTL contributed 4.7–10.7% to variance in the shape of the
posterior lobe of genital arch within an advanced intercross panel of
D. melanogaster (McNeil et al. 2011). Similarly, a genome-wide asso-
ciation test among 155 inbred strains of D. melanogaster strains of the
Drosophila Genetic Resource Panel (Mackay et al. 2012) found multiple
SNPs throughout the genome that correlated with small to moderate
differences in the size and shape of the posterior lobe (Takahara and
Takahashi 2015). Another study in D. montana showed mostly small
effect QTL explaining less than 10% of the variance (Schäfer et al.
2011). Taken together, QTL identified in these intraspecific studies
are more numerous, with smaller effect sizes, than the interspecific
studies discussed above. In this sense, our study is unusual in that it
was an intraspecific study but identified a few QTL of large effect,
although it should be noted that a small amount of interspecific in-
trogression was detected in both B6 and D2 (Yang et al. 2011). In
contrast, a recent morphometric study of mouse skulls found many
QTL of very small effect (Maga et al. 2015). Perhaps bacula are unique
in that a few major QTL enable their rapid divergence.

In our study, QTL affecting size and shape were independent of each
other, another genetic characteristic that might allow for more rapid

Figure 3 Results of SCANONE analyses for (A)
baculum size (centroid size) and (B) shape (LD1)
in the BXD recombinant inbred lines RILs.
Dashed line indicates significance threshold de-
termined from 1000 permutations of genotype
and phenotype, lines indicate LOD (logarithm
of the odds) scores testing the null hypothesis
of no QTL (quantitative trait loci) along 2,953
markers in the genome.
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morphological divergence, since mutations may be “less pleiotropic.”
Size and shape QTL could not be separated in many of the studies
mentioned above (Liu et al. 1996; Macdonald and Goldstein 1999),
as the low number of markers employed precluded delineation of mul-
tiple QTL. Two studies within D. melanogaster found distinct QTL
affecting size vs. shape of male posterior lobes (Schäfer et al. 2011;
Takahara and Takahashi 2015). Interestingly, we found that the ma-
jor QTL affecting size and shape of the baculum were independent of
each other (Figure 3), even though size and shape were correlated
(Figure 2). One explanation is that many QTL of small effect were

not detected here but sufficient to drive an overall correlation be-
tween size and shape.

Two additional predictions could not be properly evaluated here.
First, we predicted that different genetic backgrounds of mice might
yield distinct QTL, meaning there are multiple genetic pathways that
can generate baculum variation. Some support for this hypothesis comes
from a comparison of two quantitative genetic studies that mapped
nonoverlapping QTL in two different populations of D. melanogaster
(Takahara and Takahashi 2015; McNeil et al. 2011). However, one
study of a D. mauritiana–D. simulans backcross identified identical
QTL as found in a D. mauritiana–D. sechellia backcross (LeVasseur-
Viens and Moehring 2014). In the current study, we found three large-
effect QTL in the BXD RILs (Figure 3), none of which were found in the
LGxSM AIL panel (Figure S2). However, the lack of QTL in the LGxSM
AIL panel may simply be due to lack of power.

Second, we predicted that baculum variation might arise via alter-
ations in gene expression since both early genital development and bone
morphogenesis proceed from highly conserved molecular pathways
where protein-coding changes would be expected to have dire conse-
quences (Carroll 2008). Our data do not yet speak to this question;
across the 16 candidate genes identified under our three QTL (Table
S3), seven were highly or differentially expressed among parental
strains of the BXD RILs, and 10 had at least one nonsynonymous
mutation. Further evaluation of whether baculum variation arises from
expression or structural prediction requires finer scale mapping, more
detailed expression studies, and/or stronger evidence that certain genes
are good candidates for baculum variation.

Rapid genital divergence vs. conserved genital
development pathways
One of the paradoxes of the rapid evolution of male genitalia, at least
in vertebrates, is the highly conserved set of genes that appear to be
expressed during early genital development, including Sonic Hedgehog
(Shh), various fibroblast growth factor receptors (Fgfr’s), and various
homeobox-containing genes of the D cluster (Hoxd) (Haraguchi et al.
2001, 2000; Klonisch et al. 2004; Perriton et al. 2002; Miyagawa et al.
2009; Cohn 2011; Seifert et al. 2009; Gredler et al. 2015; Sanger et al. 2015;
Infante et al. 2015). In fact, the outgrowth of external genitalia shares
many genetic pathways with the development of digits (Warot et al.
1997; Tschopp et al. 2014; Lonfat et al. 2014; Cobb and Duboule 2005;
Haraguchi et al. 2000; Kondo et al. 1997; Perriton et al. 2002; Dollé
et al. 1991; Zákány and Duboule 1999) or gut (Cohn 2011), although
genital-specific enhancers modify their expression (Lonfat et al.
2014).

Hoxd-13 mutant mice have smaller bacula than wild-type mice
(Hérault et al. 1997; Zákány and Duboule 1999), and differently shaped
bacula (Peichel et al. 1997), and Hoxd genes have enhancers that drive
expression specific to external genitalia (Dollé et al. 1991; Lonfat et al.
2014). When Hoxd-13, Hoxd-11, and Hoxd-12 were all experimentally
made nonfunctional, no genitals developed (Kondo et al. 1997). How-
ever, all these genetically manipulated individuals show extreme dys-
morphia in body plan, and many are lethal before birth. Importantly,
none of the QTL that we observed here overlap with Shh, Fgfr’s, or
various Hoxd genes, suggesting the variation we observe is not due to
genetic variation in these conserved pathways, although it is formally
possible that something under our QTL affects expression of these
genes in trans.

Candidate genes
Our study offers the first set of candidate genes to explain variation in
baculum size and shape. Although systematically testing which (if any)

Figure 4 Baculum size (centroid size) and shape (LD1) from the 73
BXD recombinant inbred lines (RILs). The 73 BXD RILs are separated
according to which parental allele they carry at the three QTL
(quantitative trait loci) identified in Figure 3. The black diamonds rep-
resent the phenotypic value at each marker for the parental strains,
C57 or DBA respectively. (A) rs6202860, the marker closest to the size
QTL on chromosome 1. (B) rs3716547, the marker closest to the size
QTL on chromosome 12. (C) rs13476871, the marker closest to the
shape QTL on chromosome 2.
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of these protein-coding genes explain baculum variance remains outside
the scope of the current study, we prioritized genes based on three
criteria: 1) they fell under QTL identified above (Figure 3), 2) they were
highly expressed or differentially expressed in 5-wk-old bacula, or
had at least one nonsynonymous variant between parental strains,
and 3) literature searching revealed a potential link to bone or genital
morphogenesis. The baculum forms after birth, through both direct
ossification and ossification of cartilage anlage as the animal approaches
sexual maturity (Murakami and Mizuno 1984), so bone-related pheno-
types are potentially interesting. By these criteria, we identified 16
candidate genes (Table S3).

Four genes under the size QTL of chromosome 1 are potentially
interesting candidates. Kif14 and Aspm have been shown to cause
cranial deformities and reduced body size (Fujikura et al. 2013; Pulvers
et al. 2010). A third, Ptprc, alters bone morphology when knocked out
(Shivtiel et al. 2008). Finally, mice deficient in Mgat2 exhibit reduced
body size and reduced bone density due to hyperactive osteoclasts
(Wang et al. 2001).

Under the size QTL of chromosome 12, Dact1 has been shown to
negatively regulate Wnt signaling (Wen et al. 2010), which in turn
affects the development of bone and genitals (Zheng et al. 2012;
Berendsen and Olsen 2015; Hu et al. 2005; Haraguchi et al. 2000,
2001; Yamaguchi et al. 1999). Wnt signaling has also been implicated
in the divergence of male genitalia in flies (Tanaka et al. 2015). Mice
missing a functional Dact1 allele lacked external genitals and displayed
numerous skeletal abnormalities (Wen et al. 2010). Another gene under
this QTL, Hif1a, also affects bone density (Wang et al. 2007).

Two genes under the shape QTL of chromosome 2 influence bone
development. Rbl1 is a key regulator of cell development which, if
inactivated, results in shortened limbs, defective endochondral ossifi-
cation, altered chondrocyte growth (Cobrinik et al. 1996), and reduced
body size (Scimè et al. 2005). A second gene, Tgm2, plays a role in
chondrogenesis and ultimately bone formation (reviewed in Iismaa
et al. 2009).

Conclusions
Our study provides the first candidate genes to explain variation in
baculum size and shape, a structure with an astonishing rate of evolu-
tionary divergence. Our study provides evidence that baculum varia-
tion is explained by a few QTL of large effect that independently affect
size and shape with apparently minimal pleiotropic side-effects, and
may help reconcile the paradox of rapid morphological divergence
coupled with conserved developmental pathways. Future experiments
should focus on testing candidate genes identified here as a means to
genetically dissect its function, and to provide a deeper understanding of
the rapid evolution of this amazing structure.
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